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1.0 INTRODUCTION

The flow field in the immediate vicinity of a hovering V/STOL aircraft can be
divided into six more or less distinct regions (Figure 1.0-1). Of particular interest here
are regions 1, 2, 3, and 5, i.e., those regions wherein the engine exhaust flows combine
with induced ambient air flows to produce forces and moments upon the airframe. In the
case of aircraft with high engine exhaust velocities combined with appreciable planform
areas, such as the AV-8A and the VAK-191B, these forces and moments are almost invar-
iably both large and unfavorable. Consequently, a considerable amount of theoretical and
experimental work (e.g., Ref. 1-19) has been devoted to the subject. In 1980 the Naval
Air Development Center published the V/STOL Aerodynamic and Stability and Control
Manual in order to reduce V/STOL test data and prediction methodologies to a form useful
in a preliminary design environment - that is, to develop an engineering tool for doing
rapid hand calculations of advanced aircraft performance during the conceptual stage of
development. General Dynamics has contributed to the development of these methods
through test and analysis work which was conducted both in house and under contracts to
ONR (Ref s. 7 and 11) and NADC (Ref.16). During this work, noticable differences
occurred between the induced lift generated by configurations with rectangular jets when
compared with circular jets (Figure 1.0-2). The empirical formulations for hover-induced
lift effects for circular jets has now been extended through further testing and analysis to
cover configurations employing rectangular jets.

The results of this program are presented in this report, and the methodology itself
is contained in Section 3. This was assembled totally independent of the other sections of
the report so that it may be removed and used separately from the body of the text. For
this reason, the reader may note a certain amount of redundancy between Section 3 and
the other sections.

I'
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Figure 1.0-1 Flow Field Near a Hovering VTOL Aircraft
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2.0 METHODOLOGY DEVELOPMENT

The objective of this program is the development of an empirical method for esti-
mating the effect of ground proximity on the jet-induced lift of V/STOL aircraft employ-
ing rectangular jets. Similar to the work conducted by General Dynamics on circular jets,
a guideline was established, namely, that the resulting empiricisms were to be developed
in an efficient form from the user standpoint. An example of the spirit with which this
guideline was observed can be seen by considering that the method of Karemaa et al,
(Refs. 7 and 8), the point of departure for this work, was modified from

AL AL +AL +ALF- Fi JL + c 4L¢+ fi (2.0-1)

to 4 - L ALs + AL, (2.0-2)

The terms ALfc and ALfi, in the Karemaa formulation, represent the incremental lift
due to fountain buoyancy and the change to suckdown due to interference with the en-
trainment process by the fountain, respectively. In the Karemaa work, where the object
was to develop an understanding of the physical processes involved in the flow field, it
was most appropriate to distinguish between the two. Here, however, it was found that
empirically the two could be combined so that only ALF, the net fountain contribution,
appears explicitly. Next, in the Karemaa formulation, ALj represents the suckdown on
those areas of the planform adjacent to each individual exhaust nozzle. Experimentally,
A Lj was determined by measuring this force on the adjacent area with the nonadjacent
planform areas physically present bit non-metric. A predictive technique for ALi would
require the structuring of the induced flow fields because the locations of the nonadjacent
areas change the flow field itself. Thus, suckdown, ALs, which can be predicted empir-
ically, is the summation of the suckdown produced by each jet upon the entire planform
area.

In all instances, justification for the empiricisms was made, ultimately, a posteriori,
i.e., do they work to an acceptable degree of accuracy over a full range of likely configu-
rations. As will be seen in Appendix B, the complete methodology was tested against a
number of configurations, which were not from the same data base from which the empir-
icisms were developed; the predictions obtained matched the test data within about 1% of
the total lift, which is considered adequate for the applications envisaged for this method-
ology.

4



NADC 79298-60

2.1 SUCKDOWN

2.1.1 Free-Air Suckdown

The portion of induced lift that accompanies any hovering V/STOL configuration -
regardless of altitude, is the free-air suckdown. From Wyatt's (Ref. 4) results, an expres-
sion for this force takes the form,

AL8 cc.

F .0667 (d/D- .420) (2.-)
ji

where d/b < .420.

This expression has proven to be accurate at predicting the free-air suckdown
associated with configurations employing circular jets (Ref. 16), but fails to correlate the
data taken from models tested with rectangular jets (Figure 2.1-1). There appears to be a
dependence on AR for the rectangular jet cases which can be related by the expression,

faLS 1+Dd' AR. - 1)(+AR
F J - 004 (d/b)i + .450 (1.28) ' 20 +) + (2.1-2)

as shown in Figure 2.1-1.

2.1.2 Altitude Dependent Suckdown

The altitude dependent suckdown associated with planforms employing rectangular
nozzles was initially assumed to be similar to that produced by circular jets. The work of
Foley and Sansone (Ref. 16) has shown that there is a fine structure to suckdown that is a
function of the area ratio 5/d. This structure consists of curves of the same family for
planforms employing circular jets, which, in empirical, algebraic form, are described by
the relation

ALs- AL Sao
F -(.00125 B/d + .0185) - h/(B-d)F [/j) (2.1-3)

J

Using this equation, an attempt was made to correlate the data reduced from plan-
forms employing rectangular nozzles, Figures A-6 through A-18, Appendix A. The effect
of rectangular nozzles appears to be a strong factor on the suckdown, such that Equation
2.1-3 is not within the accuracy desired (Figure 2.1-2). The structure of the suckdown
that eminates from planforms with rectangular nozzles of like AR demonstrates a family
of curves very similar to those produced from planforms employing circular nozzles (Fig-
ure 2.1-3), however, there is little effect of nozzle AR ratio on suckdown for planforms of
equal size. This can be seen in Figure 2.1-4. The altitude dependent portion of suckdown
can thus be described as

AL - AL - [01- 2 -(1.5 + .07 B/d)

F(.00075 fI/d -. 022) -d(2.1-4)

A ..- ' -~ V
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Figure 2.1-1 Free-Air Suckdown with Rectangular Jets
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and is depicted in Figure 2.1-2.

The total suckdown for a configuration can then be determined by adding the free-
air suckdown to the altitude dependent suckdown at each height of computation.

ALS ALS - ALS' + ALs_
" Fj F(2.1-5)

By definition, the suckdown for a configuration with more than one nozzle is obtained by
calculating the individual suckdown for each nozzle and then summing and weight averag-
ing by thrusts, that is

ALs I .. s± CF)/Z (Fj)
i-Fi J (2.1-6)

2.2 NET FOUNTAIN BUOYANCY

The development of the empirical terms to predict fountain buoyancy required a
large data base. In order to gather a sufficient spectrum of test data, it was determined
that the selected configurations should resemble a range of planform sizes and shapes
employing rectangular nozzles varying in number, AR, NPR and nozzle location. To cover
these needs, the configurations shown in Figure 2.2-1 were picked as reasonable test
vehicles for parametric variations of the above variables. Appendix A defines these
model configurations used during the test phase of the program and also presents the test
data acquired. This data formed the basis to develop the fountain effects of typical
V/STOL aircraft.

Since each test configuration was designed with a specific class of V/STOL aircraft
in mind, it becomes necessary to be conscious of the configuration dependency that
accompanies the various sets of fountain lift data. The prediction techniques used to
study a particular aircraft should include the selection of the most appropriate set of data
from this section based on configuration similarity.

The experimental method of Ref. I I was used to take force measurements of .1 L/ F
upon the planforms. For each configuration ALf/Fj was obtained by subtracting the cal-
culated suckdown from the AL/Fj obtained from the balance data, i.e.,

&LF/Fj - AL/Fj - ALs/Fj (2.2-1)

Since the parameter ALF/Fj includes interference effects as well as fountain
forces, it is noted that negative ALF/F exist for some configurations at certain alti-
tudes. These negative forces may also become more positive as altitude increases
because of a reduction in the interference effects.

To determine the effect of fuselage contour and lift improvement devices (LIDs), all
configurations were tested with and without LIDs, and with fully contoured fuselage sec-
tions. The fuselage contour was varied on Configurations 2B, 3B and 4B.

I0
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The effect of a V/STOL aircraft hovering in a crosswind environment was also in-
vestigated. Configurations 2B, 3B and 4B were tested with a 25 knot direct crosswind.
The influence of the crosswind produced a negligible effect on induced lift since the
velocity of the jets dominated any effect produced by the crosswind.

2.2.1 Two-Jet Fountain Lift

Fountain lift data for configurations 2-A, 2-B and 2-C have been developed accord-
ing to the procedure noted in Section 2.2. The data for Configurations 2-A and 2-B are
presented in Figures 2.2-2 through 2.2-6 as ALf/Fj versus (F)/d)wa, where (E)/d)wa is the
correlating parameter used to relate planform size to nozzle size. (Section 3.1.3 details
this parameter). Each graph represents the fountain lift force developed over a range of
planform sizes and covering various planform altitudes above the ground. These plots
have been produced for a particular nozzle AR and configuration type. This requires the
user of this data to extract the fountain forces at the value of (T/d)wa desired for the
ARs tested. To determine the fountain forces at the proper nozzle AR it then becomes
necessary to cross-plot ALF/Fj versus AR at the desired value of (TD/d)wa. Configuration
2A was tested at AR = 1, 2.7 and 6 over a wide range of (T/d)wa, whereas Configuration
2-B was tested at AR 1 and 2.7, the likely range for this type configuration.

Configuration 2-C is a specialized planform shape representing an ejector system.
This model was tested at AR = 6 and (T/d)wa = 3, therefore, the fountain lift data is
presented on Figure 2.2-7 as ALF/F j versus h/dwa for the single AR and planform size.

2.2.2 Three-Jet Fountains

The fountain lift data for Configurations 3-A and 3-B is presented on Figures 2.2-S
through 2.2-12 in the manner described in Section 2.2.1. Configuration 3-A, being a
variant of 2-A, was tested at AR = 1, 2.7 and 6 while Configuration 3-B, which was a
variant of 2-B, was tested at AR = I and 2.7.

2.2.3 Four-3et Fountains

The fountain lift data for Configuration 4-B is shown on Figures 2.2-13 through 2.2-
15. The data was developed at AR = 1, 2.7 and 6, consistent with Section 2.2.1.

Configuration 4-A is a modification of 2-C with four nozzles (AR = 2.7) replacing
the two existing nozzles (AR = 6.0). The same planform size was tested at identical NPR
and altitudes. The fountain data demonstrated that the close proximity of the nozzles
caused this model to perform identical to Configuration 2-C, however, effects of AR can
be deduced from Configuration 4-A. The jet merging of the fore and aft nozzles was
completed before an altitude of h/dwa = 1.5 was reached. Therefore, the fountain lift
data for Configuration 2-C also applies to Configuration 4-A.

12
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2.3 EXTRAPOLATION COEFFICIENTS

Equation 2.0-2 is useful only for calculating ground-induced forces on flat-plate
models at low altitudes with nozzle exhaust NPR = 2.0. In order to extend the application
of the methodology, a number of extrapolation coefficients were developed in Ref. 16 to
account for planform contour, NPR, etc. Equation 2.0-2 now takes the form

-- L -1 [CS dLs + CF dLF] (2.3-1)

The values of the extrapolation coefficients, CS and CF, used for computation of the
suckdown and fountain forces associated with rectangular jets were found to be identical
to those defined in Ref. 16. The testing conducted employing rectangular nozzles was
used to confirm those results and as one might expect, the effects of NPR, jet merging,
planform contour or LIDs does not vary once the basic fountain strength is set.

2.3.1 Suckdown Extrapolation Coefficient CS

Work on the effect of turbulence on suckdown (Ref. 11) has shown (I) the possibility
of a large-scale effect and (2) a pronounced effect of NPR on suckdown. Therefore, let

CS = CS1 - CS2 (2.3-2)

where CSI is the extrapolation coefficient to account for the difference between model
scale and full scale and CS2 for variations in NPR from 2.0.

Presently, General Dynamics is undergoing testing and analysis to quantify CS1
satisfactorily. It is being retained in the meanwhile as

Csl = 1.0 (2.3-3)

The coefficient, C5 2 , as developed in Ref. 12 and confirmed in these tests is given by

CS2 , 1.173-.2495 In (NPR) if NPR - 2 (2.3-4)
1.061-.0889 In (NPR) if NPR 2! 2

2.3.2 Fountain Extrapolation Coefficient CF

The fountain coefficient is a little more complex than the suckdown coefficient in
that, not only are there terms to reflect scale and NPR, but also terms to account for the
effect of jet merging before impact with the ground plane, planform contour, and LIDs.
Therefore,

CF - CF1 C OF2 "" CES (2.3-5)

where

CFI is the effect of scale (interim value = 1.0)

CF2 is the effect of NPR
27
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CF3 is the effect of jet merging

CF4 is the effect of plan fol ,n contour

CF5 is the effect of LIDs.

For precisely the same reason that CSI = 1.0, also CFI 1.0; it is reserved for use
when the effect of scale becomes better known.

The effect of NPR on fountain lift as developed in Ref. I I and confirmed during this
test program is given by

CF2 - .736 in NPR + .481 if NPR - 2 (2.3-6)
- .035 in NPR + .930 if NPR ; 2

In the case where NPR varies from nozzle to nozzle, the CF2'S are thrust averaged and

N N
CF2 (CF2 FJ)i/Z (FJ)1 (2.3-7)

For any aircraft configuration with more than one nozzle, as altitude increases jets
begin to merge so that the character of the fountains change. As an example, a three-jet
configuration, as it gains altitude, will reach a point where two jets begin to merge
(provided, of course, the nozzles are not equidistant apart). When this occurs, the charac-
ter of the fountain will begin to change from that of a three-jet to that of a two-jet. At
still higher altitude, when the two have completely merged, the fountain will become
entirely a two-jet fountain. For many aircraft, such mergings can begin quite close to the
ground. Previous work, Ref. 16, has shown that jet merging is a function of nozzle
spacing, dE. Figure 2.3-1 defines this effect on fountain lift.

The cross-sectional shape or contour of a planform has a very strong influence on
the amount of available fountain lift that is actually recovered by the planform. In the
case where the edges of the planform are rounded, the fountain, after impingement, will
then tend to flow, Coanda-style, around the planform (Figure 2.3-2). The negative pres-
sures, which are induced upon the planform and attend this turning, lower the lift.
Herein, CF4 is shown on Figure 2.3-3. Interestingly, CF4, for two-jet fountains, is not a
function of altitude but is very strongly dependent on contour. CF4 for three- and four-
jet fountains is shown in Figure 2.3-4. Here, CF4 is a function of altitude but is not as
sensitive to the contour as is the two-jet case. Undoubtedly, the difference is die to the
different fountain structure.

All of the configurations were tested with and without LIDs. Figures A-2 through
A-5 describe the LIDs tested. By reversing the direction of the fountain flow (Figure
2.3-5), a LID is able to amplify the fountain lift. The effect of a complete longitudinal
and transverse LID system (i.e., the LIDs form a closed box) is to nearly double the
fountain lift; whereas, if the LIDs are left open on two ends, the lift increases by about
50%. Ref. 16 indicated some other characteristics of LIDs.

1. Except at very' low alt tudes, the depth of the LIDs is not particularly
important.
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Figure 2.3-2 Fountain/Semi-Rounded Fuselages
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I I

Figure 2.3-5 Fountain Streamlines Around A Blunt Fuselage and A LID
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2. LIDs should always be placed interior to the nozzles; exterior LIDs interfere
with the entrainment of ambient air at low altitudes to such an extent that
suckdown is amplified over and above the beneficial effect of fountain lift
enhancement.

3. In the instance where LIDs do not capture the entire fountain, that portion of
the fountain whose lift is enhanced can be determined from geometrical con-
siderations (Subsection 3.1).

In general, the size, shape, and extent of a LID system will be restricted by other
considerations in aircraft design. Therefore, the values of CF5, presented in Subsection
3.1, should be regarded as probably optimistic indicators of what can be achieved in pr.ac-
tice.
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3.0 METHODOLOGY APPLICATION PROCEDURE

Procedures and definitions for application of the method to rectangular jet aircraft
are presented in this section. The various correlations derived from empirical methods
are intended to cover the hover flight conditions of current V/STOL aircraft employing
r .ctangular jets. The methodology has been developed as a prediction technique in the
preliminary design environment and is considered accurate to +1% of the total lift. The
effect of various rectangular nozzle and planform configuratio'ns, up to four nozzles are
considered.

3.1 PROCEDURE

3.1.1 Total Induced Lift, AL/Fj

The induced lift during hover can be separated into two parts, as shown in Equation(3.1-I).

JL/F J- AL/F + dL/F (3.1-1)

The first, ALs/Fj, is the suckdown generated by the ambient air that is accelerated
toward the aircraft because of entrainment by the exhaust flows, creating a low pressure
field under the aircraft and, consequently, a downward force on the planform. The second
effect, ALF/Fj, is the buoyant force derived from the impact (if any) of the fountain jet
formed by a multiple-nozzle configuration upon the planform.

3.1.2 Tabulation

The various components of induced lift are tabulated in Figure 3.1-1. The three
main blocks of the table are

I. Suckdown
II. Fountain Lift
ll. Induced Lift

The general arrangement of the table should follow a vertical setup for computing each
column as a function of planform height above the ground. This may be done in various
ways. As depicted in the example table, a common reference height is listed in nozzle
diameters. Because many configurations have multiple nozzles (that are not always equal
in equivalent diameter), the approach used here is to normalize altitude by equivalent
single nozzle diameter, De. However, there are two additional normalizing diameters
that are used in the methodology, namely, the individual equivalent nozzle diameter, d,
(used in suckdown calculations) and the thrust weighted diameter, dwa, Subsection 3.1.3,
(used in fountain lift calculations). It is necessary to use extreme care in setting up a
tabulation sheet to reflect the equivalencies between the various altitude normalizations.

A listing of the necessary variables of the problem should be placed on the table for
quick reference. The authors have listed those items of primary need on the example
table, though more could be added depending on the specific configuration under study.
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The first block is rather straightforward and similar in most configurations. The
suckdown will be calculated individually for each nozzle along with the free-air suckdown,
ALs,/F-. Block II sets up the method for calculating fountain lift. Block 11 will be the
most difficult to set up since a four-jet configuration can produce the fountain character-
istics of a three-jet or two-jet configuration when the planform reaches a height of jet-
merging for nozzles that are in close proximity. Therefore, Block 11 will normally be set
up for more than one fountain computation. Block 11 also accounts for the differences in
induced lift from the two-dimensional, clean planform. Here, the effects of planform
contour and LIDs are incorporated into the basic fountain effects. .

The introduction of a high-wing aircraft or other non-coplanar configuration
presents additional difficulties in the computation of induced lift on a hovering V/STOL V
aircraft. Figure 3.1-2, depicts such a planform at two altitudes above the ground - one
measured to wing height (hw) and a different height to fuselage base (hf). The method of
computation for both nozzle suckdown ( ALs/F i) and fountain lift (ALF/F j) is affected by
this type of configuration. This causes the problem tabulation to be expanded to a two-
phase setup, whereby, the calculations for fuselage suckdown and fountain lift use hf
whereas the wing planform uses hw for its computations of suckdown and fountain lift.
These values of suckdown and fountain lift can then be summed; due care must be exer-
cised in the summations to reference the induced forces at the correct planform altitude
being used in the tabulation.

3.1.3 Suckdown

The equations, parameters, and methods for computing nozzle suckdown are des-
cribed below:

Equations

[ 5s-ALso [A( D)+B] Csj h J (3.1-2)

where

A = .00075
B = -.022
C = -(1.5 + .07 (5/d))

and

i = nozzle of interest.

-. 004 ( (d/D) , + .450 (1(1) 5di + A~ - 1 + 1
S20 +(b/d)/ (3.1-3)

Parameters

di equivalent nozzle diameter of ith nozzle
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dwa average nozzle diameter of n nozzles,

J1

De equivalent single nozzle diameter,on
d d(F )±/[ x (F )j]

B1i effective mean diameter,

=_di- -

where k-1 k f-2 i

1. The incremental area and its associated radius from the nozzle are sk
and rk, respectively (see Figure 3.1-3).

2. The individual nozzle diameter (second term) need only be subtracted if
di falls on the planform.

3. Subsequent effective nozzle diameters (third term) need only be sub-
tracted if they fall on the planform.

4. The entire planform is covered by m elements.

5 wa thrust weighted average of effective mean diameters,

.[Z~ 6 (Fg][: (F]

Suckdown Extrapolation Coefficient

CS - CS1 CS2 (3.1-4)

where

CSI = 1.0, reserved for scale effects

Cs2 = effect of nozzle pressure ratio

- 1.173 - 0.2495 ln(NPR). NPR _ 2.0 (3.1-5a)

- 1.061 - .0889 n(NPR), NIPR - 2.0 (3.1-5b)

(CS2 can be obtained graphically from Figure 3.1-4)

The suckdown associated with each nozzle of the aircraft is calculated from Equa-
tion 3.1-2 and then listed in Block I of the tabulation. Because of its AR dependence the

39
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free-air suckdown of the aircraft must be calculated from Equation 3.1-3 for each indi-
vidual nozzle using 15i/di and AR i . The total suckdown of the aircraft is then the sum of
the thrust-weighted average of individual nozzle suckdown and free-air suckdown, i.e.,

ALs/Fj - [:Ls- ALo) /Fj]w+ [L-,_ 'Fj]wa (3.1-6)

For the calculation of suckdown on a non-coplanar planform it is necessary to find
(.ALs/Fj)wing using Dwing and hw where Dw is determined for the exposed wing area only.
Likewise, the value of (AgLs/Fj)fuselage is determiaed by use of 5fuselage and hf. So
that,

.Ls/FJ - (ALs/Fj)wing + ( iLs/Fj)fuselage (3.1-7)

at each planform reference altitude of interest.

3.1.4 Fountain Effects

The equations, parameters, and methods for computing fountain lift are described
below:

Equations

II III III
ALF/Fj - (ALF!FJ) . CF + (ALF/Fj) CF

IV IV(.1 )
+ (ALF/F) . CF

where 11 designates two-jet, Ill designates three-jet, and so on.

Parameters

b effective mean diameter of the planform

dE distance between nozzles (near edge to near edge)

hm height of jet merging, 1.374 dE
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Fountain Extrapolation Coefficients

CF -CF1 * CF2 . CF3 CF4 . Cr5 (3.1-9)

where

CFI = 1.0, reserved for scale effects
CF2 effect of nozzle pressure ratio,

- 0.736 ln(NPR) + 0.481, NPR - 2.0 (3.1-I0a)

- 0.035 In(NPR) + 0.930, NPR - 2.0 (3.-1Ob)

(CF2 can be obtained graphically from Figure 3.1-5)

CF3 effect of jet merging, obtained empirically from Figure 3.1-6

CF4 effect of planform contour, obtained empirically from

Figure 3.1-7 (three or more jets)
Figure 3.1-8 (two-jet fountain)

CF5 effect of Lift Improvement Devices (LIDs),

- 1.0, without LIDs

= 1.5, longitudinal LIDs
- 2.0, longitudinal and transverse LIDs.

A non-coplanar planform will require additional calculation to accurately represent
the fountain lift if the fountain impacts both non-coplanar portions of the planform. The
fountain effects on the wing, (A LF/Fj)wing , must be computed with 5wing and hw as was
performed in the suckdown calculations for non-coplanar planforms. Also,
(A LF/Fj)fuselage will depend upon Dfuselage and hf.

3.1.4.1 Multi-Nozzle Fountain

The buoyant force produced by the fountain jet of a multi-nozzle configuration has
been quantified by empirical means. Figures 2.2-2 through 2.2-15 provide the basic data
of fountain lift for two-, three-, and four-nozzle configurations. As previously stated it is
sometimes necessary to determine fountain lift for more than one type of fountain due to
jet merging with any given configuration. The altitude (h) used for fountain buoyancy
calculations is the distance from the ground to the lowest point on the planform that the
fountain impacts. The fountain strength is a function of the effective mean diameter
over the average nozzle diameter (Dwa/dwa). By indexing the appropriate figure with the
value of Dwa/dwa from Subsection 3.1.3, ALF/Fi can be extracted at various planform
heights (h/dwa). It is essential that the proper figure be used to determine ALF/Fj. Care
must be exercised to distinguish the test configuration that most closely resembles the
aircraft model under study.
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-NPRIK2 CF2 - 0.736 ln(NPR) + 0.481

NPRIW2 CF2 -0.035 ln(NPR) + 0.930

-CF2

- 7~~NPR

Figure 3.1-5

NPR Extrapolation Coefficient

a44



NADC 79298-60

________~:Z= === 474--- --- _____

0z

---- V "E

__ ii-

7n-: -Z-~

_ 41

* ----- 7- 7:



NADC 79298-60

a

-- EL

7 =_

~A ___ _ El

77_ ~

46- _ _ __ _ _



NADC 79298-60

* _ . { i .4) : i - , !

_____ -______( ) I ___ ___

; " 1 - \ - • _ _ ' t i • ' '

_______ i t 1""i ; ______

* -7-- 4 : --! 4 --- 4 -~

~ii -2r/W

Figure 3.1-8 Effect of Planform Contour - 2 Nozzle Case

47



NADC 79298-60

3.1.4.2 Fountain Extrapolation Coefficients

The coefficients for fountain extrapolation must be considered to fully represent the
true fountain lift of the configuration under study.

The correction for nozzle pressure ratio, CF2, must be determined for each nozzle
and then weight averaged by thrust to give a composite CF2.

[ F2 (CF2 ) i(F J)] (i

The values of CF2 for each nozzle can be determined through Figure 3.1-5 or Equation
3.1-10.

When the altitude of a hovering aircraft increases, the jet dispersion will cause
merging of individual jets with other jets and hence, a change in the fountain character.
To account for this fountain characteristic, it is necessary to include in Equation 3.1-8 the
fountain merging coefficient CF3, for each fountain type.

CF3 is determined for all fountain types and at each planform altitude from Fig-

ure 3.1-6 by indexing the parameter (L - 1.374), where dE is the distance between

merging nozzles. At any particular planform height, a multiplicity of fountain types could
occur where a four-nozzle fountain, by merging, becomes a three-jet fountain. At the
altitude that jet merging commences, the merging coefficient of the four-nozzle fountain,
CFJ, will have a value less than unity and as altitude increases, decrease to zero. In this
regime, the next merging coefficient, CF3, will have a value

M rZ

CF3 = I - CF3 (3.1-12a)

at each particular altitude of interest. Similarly, CF3 will become a driving function for
CA when an altitude is reached to cause the three-jet case to merge into two jets, i.e.,

CF = I - CF3 (3.1-12b)

at these particular planform altitudes. Finally, a point will be reached when the aircraft
planform exceeds the height of total jet merging and fountain breakdown, where it can be
seen that the summation of jet merging coefficients will be less than unity because the
only merging coefficient remaining is CA3 and its value will be less than one. A tabular
example is shown in Figure 3.1-9.

The fountain lift of a two-dimensional planform can now be determined using the
basic fountain lift, CF 2 and CF 3 , such that

(ALIFj) 2 D a (ALFIFj) 2 D + ALS/Fj (3.1-13)

It is necessary to correct the two-dimensional fountain lift for effects of planform
contour and LIDs by using CF4 and CF5. The effect of planform contour is determined by
the use of Figures 3.1-7 and 3.1-8. Both figures use the contour parameter 2r/W as the
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hd a  CF3  CF3  CC3 F3

1 1 0 0 1
2 1 0 0 1
3 .7 .3 011
4 .4 .6 0 1
5 0 1 0 1 2
6 0 .5 .5 1 3
7 0 0 1 1 4
8 0 0 1 1
9 0 0 .3 .3 5

10 0 0 0 0 6

NOTES:

1. Two of the four jets begin to merge, starting a
three-jet fountain.

2. Merging of two jets complete; fountain is a
three-jet fountain.

3. Two remaining jets begin to merge, starting a
two-jet fountain.

4. Completion of merging of two jets; fountain is
now a two-jet fountain.

5. Merging of all the jets begins, reducing fountain
lift.

6. Merging complete; fountain lift eliminated.

Figure 3.1-9 Example of Jet Merging Process
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index of the fountain lift effect on a rounded surface, CF4. Figure 3.1-7 covers the plan-
form roundness coefficient, CF4, of a three- or four-jet fountain; whereas, Figure 3.1-8
must be used to determine CF4 for the case of a two-jet fountain. The roundness extra-
polation coefficient must be determined uniquely at each planform altitude and then used
to correct the two-dimensional fountain strength to a three-dimensional effect. That is,
the fountain character (two-jet, three-jet ... ) must be known to determine whether Fig-
ure 3.1-7 or 3.1-8 will be used for CF4 at each height of computation. The fountain lift
of a three-dimensional planform then becomes

(AL/F )3D - CF4 ( LF/F.) 2-D (3.-14)

When LIDs are used, CF4 = 1.0 except for the special case given by Equation 3.1-17.
The presence of LIDs will increase fountain buoyance and must be considered through the
fountain extrapolation coefficient, CF5. For the general case of fully enclosed longi-
tudinal and transverse LIDs (Figure 3.1-I0a and b), the value of CF5 is 2.0, as opposed to
the configuration without LIDs where CF5 = 1.0. A configuration with only longitudinal
LUDs (Figure 3.1-10c) uses CF5 = 1.5. The maximum benefit obtained from the LIDs men-
tioned above will occur only when the LID captures the entire fountain that impinges on
the planform. Loss in the theoretical lift improvement of a LID occurs when the device
does not fully span the planform width as depicted in Figure 3.l-10a and b. Figure 3.1-10a
shows a two-jet fountain which has a LID that only subtends an angle 0L on the fuselage.
The fountain extrapolation coefficient must be decreased in this case by

SF5" 1 + (CF5-1) sin 9 L (3.1-15)
sin 92

For a three- or four-jet fountain (Figure 3.1-10b), a decreased LID size leads to the rela-
tionship:

CF- 1 + (C 5 1) (31-6
PF

where (24/Q) is the ratio of LID width to fuselage width.

An additional fountain lift factor must be considered when using LIDs. The loss 'f
lift due to planform contour (CF4) does not occur in the area covered by the LID. There-
fore, if the LIDs do not subtend the entire planform, the new coefficient for planform
roundness becomes

12 (3.1-17)

C "4 - C. 4  C 4)

3.1.5 Induced Lift

Once the values of the fountain extrapolation coefficients have been determined, it
is possible to calculate the fountain buoyance of a two-dimensional planform by use of
Equation 3.1-13. The two-dimensional fountain lift is then summed with the planform
suckdown in order to compute the induced lift of the configuration

(AL/FJ)LID a CF4 . CF5  (ALF/FJ)2-D +ALS/F, (3.1-18)
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A Not Fully Transverse

B Not Fully Longitudinal

C Longitudinal Only

Figure 3.1-10 C F5 -LIDs, Special Situations
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The induced lift of planforms with contoured fuselage sections is computed in the same
manner using the appropriate fountain lift.

(AL/FJ)3-D - (-4LF/Fj) 3 -D + ALs/Fj (3.1-19)

The final step in the determination of total induced lift for a particular configuration is to
account for LIDs by use of CF 5 .

(AL /F ) .CF5 (ALF/FJ) 3 -D + ALs/F (3.1-20)

3.2 SAMPLE CALCULATION

3.2.1 Suckdown

The most difficult step toward the computation of suckdown is the calculation of D
for each nozzle, because it must be performed graphically, as per Section 3.1.3. The
effective mean diameter also influences the determination of fountain strength which
expands the importance of 5. General Dynamics' Configuration A-311 is analyzed in this
section with the following value of D graphically determined:

D1 = D2 = 6.78 in

Since this configuration possesses two symmetric rectangular nozzles the weighted
average of [ becomes

(4.84) Fjj + (4.84) FJ 2 = 6.78 in

Fjl + FJ2

and

d d2 = dwa = 1.4 in

De 1.98 in

ARI = AR 2 = 1.5

(CS2)1 = (Cs2)2 = 1.173 - 0.2495 In (1.5) = 1.0718

52



NADC 79298-60

Suckdown forces for this configuration can now be calculated for each jet

aL5  AL5  (.00075 /d - .022) 1 _1_1 -(1.5 + .07 Dd) CS2

bh/d I 1.84 (.79

- - .0184 [1 1.84 (1.0714)

at each altitude of interest.

As a convention, the computation of AL/Fj will be presented as a function of h/De
even though this particular configuration is not as complicated as some aircraft designs
that possess multiple nozzles of varying dimensions and thrust. Block I of the tabulation
sheet on Figure 3.2-1 lists the values of the computed suckdown forces as a function of
h/De. It is important to note that the altitude used in the computation has been re-
referenced to h/d, to be compatible with 5/d in the above equation for single nozzle suck-
down.

Because Configuration A-311 has two nozzles of equal thrust one finds

(ALS ..AL)( AL1 - ALSC - -.1236

at h/De = I.

It is now possible to compute the free-air suckdown of the configuration using 5wa/dwa
and Equation 3.1-3.

I "L - -. 004 (4 + .45 (1.28)4.84) (1 5 38- ( + 5.38-1) -. 0157-F 4.8 20 4.84 / -0s
Wa

Then,
4L5 . (ALe- ALSOO + AL do

F J F J w F\ /

- -.1236 - .0157 - -.1393

at h/De 1.
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3.2.2 Fountain Lift

This two-jet configuration will produce a fountain that dissipates at some altitude
due to jet-merging. During the course of the jet-merging the character of the fountain
will change. This causes a degree of complexity in the computation of the fountain force
but not nearly so much as the case of a four-jet model that transitions from the four-jet
fountain to a three-jet, two-jet and so on. A more in-depth example of multiple nozzle
jet-merging can be seen in Ref. 16.

3.2.2.1 Two-Jet Fountain

The fountain lift that should be expected by Configuration A-31 1 can be predicted
by utilizing the fountain lift presented on Figures 2.2-2 through 2.2-4. It is necessary to
acquire the data from these three figures in order to crossplot the fountain force versus
AR and thus obtain ALF/Fj for AR = 5.38 at each altitude desired. By indexing Fig-
ures 2.2-2 through 2.2-4 with Dwa/dwa = 4.84 it was possible to create Figure 3.2-2 which
in turn allows for ALF/Fj to be plotted versus altitude on Figure 3.2-3. Note that
Figure 3.2-2 is shown as a function of h/dwa and that this data was transferred to Fig-
ure 3.2-3 as a function of h/De and then listed in Block 11 of Figure 3.2-1.

3.2.2.2 Fountain Extrapolation Coefficient CF2

The extrapolation coefficient for NPR, CF2, must be included in the fountain lift
computation to obtain proper correlation of results since the subsonic V/STOL has an NPR
other than the baseline 2.0. With both nozzles having NPR = 1.5, we have from Subsection
3.1.4

CF2 - 0.736 1n(1.5) + 0.481 - 0.779

CF2 can now be listed in Block 1I, Figure 3.2-1.

3.2.2.3 Fountain Extrapolation Coefficient CF3

The values of NLF/Fj listed on Figure 3.2-1 constitute the main character of the
fountain lift for Configuration A-311. It is necessary to determine the extent of jet-
merging that will occur with this two-jet configuration. The fountain extrapolation coef-
ficient for jet-merging, CF3, must be determined as a function of planform height. Fig-
ure 3.1-6 bis is an empirical formulation of the jet-merging coefficient, CF3. The two-jet
fountain of the subsonic V/STOL begins to merge at a height

hm - 1.374 dE - 1.374 (2.3) - 3.16 in - 1.6 h/De

which causes CF3 1.0 at h/De I and 1.5. At h/De = 2.0 we have

(h - hm) f dE (2(1.98) - 3.16) 1 2.3 , 0.35
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and, the fountain extrapolation coefficient for jet-merging can be found in Figure 3.1-6
bis.

CF3 = .865

Further values of CF3 are shown in Block 11 of the tabulation sheet

3.2.2.4 Fountain Extrapolation Coefficient CF4

To incorporate the effect of planform contour into the fountain lift predictions of
Configuration A-311 it is necessary to compute the planform contour parameter 2r/W. As
depicted in Figure 3.1-8 bis, the radius of curvature, r, and fuselage width, W, must be
measured. For this configuration

2r/W = 0.24

is used to index Figure 3.1-8 bis to determine the two-jet fountain extrapolation coef-
ficient for planform contour.

CF4 = 0.52

The value of CF4 is listed in Block 11 of Figure 3.2-1 for all h/De.

The total fountain lift can now be computed for this configuration. At h/De 2 we
have

LLF/Fj - CF2 CF3 CF4 • ALF IFj

- .779 (.865) .52 (.0470)

- .0165

3.2.2.5 Fountain Extrapolation Coefficient CF5

The effect of placing a LID on the planform underside causes a change in the plan-

form roundness as described in Subsection 3.1.5.2. The width of the LID and fuselage are

12 - WLID - 3.28 in

'1 - Wfuselage M 14.0 in

Thus, the new value of CF4 becomes

(CF4) ID - .52 + (1 - .52) 3.28(C4LI 14.0

- .632

This new value of CF4 is posted on Block II of Figure 3.2-4, which has been set up to

include the effects of LIDs on Configuration A-311.
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This A-311 aircraft uses a three-sided LID for fountain lift enhancement. The value
of CF5 must first be set at a theoretical value of 1.75 for a three-sided LID. Because the
LID is not as wide as the full fuselage, the extrapolation coefficient for this LID must be
modified as shown in Subsection 3.1.5.2.

C 1 + (1.751) rsin 30.5 degrees1
F5 [sin 69 degrees J - 1.408

These values for CF5 are shown on Block 11 of Figure and have been used in conjunction
with CF 4 to correct the fountain strength to account for the LID effect on induced lift.
The new fountain lift for this configuration at h/De = 2 is

(aLFfFj)LID - CF2 CF3 . (CF4)LID CF5 - bLF/Fj

- .779 (.865) .632 (1.408) .0470

- .0282

3.2.3 Total Induced Lift

3.2.3.1 Induced Lift for Configuration A-311

From the computation of suckdown and fountain forces in the preceding sections the
induced lift can be determined from Equation 3.1-14 using the data on Blocks I and II of
Figure 3.2-1.

AL/Fj - &LS/Fj + LLF/Fj

- -.0502 + .0165

- -.0337

at h/De = 2.

The values of &L/Fj have been listed on Block III of Figure 3.2-1. The comparison
plot of predicted induced lift and actual test data for Configuration A-311 is shown in
Figure 3.2-5.

3.2.3.2 Induced Lift for Configuration A-311 with LID

The predicted induced lift for this configuration employing a three-sided lift
improvement device is determined using the suckdown and fountain forces found in Blocks
I and II on Figure 3.2-4 and Equation 3.1-18. At h/De = 2

L/Fi - -.0502 + .0282

- -.0220

The induced lift has been calculated at all levels of h/De and tabulated on Figure 3.2-4.
Figure 3.2-6 compares the prediction and test data for the induced lift of Configuration
A-3! with a three-sided LID.
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4.0 CONCLUSIONS

The work performed under this contract developed a methodology for prediction of
jet induced lift for V/STOL aircraft employing rectangular jets. The correlations of
Appendix B show a general agreement between methodology predictions and actual test
data of +.01 A L/Fj. Analysis was also conducted to describe the effect of a 25 knot
crosswind on induced lift. Figure 4.0-1 shows that the velocity of the jets far exceed that
of the crosswind which virtually nullifies the effect of the crosswind on induced lift,
however, further work could be performed to describe the effect of the crosswind on
induced moments. It was found that the AR orientation of nozzles has a negligible effect
on ALs/F j but that ALF/F j has a strong configuration dependence.
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APPENDIX A

MODEL CONFIGURATIONS

and

FORCE DATA

(INDUCED LIFT vs ALTITUDE)

The model configurations used during the test phase of this program are detailed on
Figures A-1 through A-5.

Two-nozzle configurations incorporating rectangular nozzles are of three types: (a)
Configuration 2-A, employing jets through or under the wing (so that the static thrust
center and the a.c. are close together), (b) Configuration 2-B, Lift-Lift/Cruise, and (c)
Configuration 2-C, with jets longitudinally along each of the fuselage. Configuration 2-A
could be used for either a transport or a fighter aircraft and could be powered by either
lift/cruise engines, fans, or ejectors. Thus, it was tested over the full range of AR and
5/ D e . Configuration 2-B corresponds to a typical single cruise-engine fighter; appropri-
ate ARs for this engine are I and 2.7. However, the lift engine exhaust is circular; there
is a weight penalty involved but no performance benefit obtained from transitioning to
rectangular. The appropriate 5/De's would be 6.5 through 10. Configuration 2-C, on the
other hand, is likely only in an ejector version. It was tested at AR = 6, D/De = 3.

Three-nozzle Configurations incorporating rectangular nozzles tend all to be lift-
lift/cruise aircraft. Configuration 3-A has a circular exhaust for a lift engine, fan, or
puffer pipe. This configuration was tested at AR 1 1, 2.7 and 6. The range of D/De was
from 3 through 10. The planforms fabricated for Configuration 2-A were modified for
this test. Configuration 3-B is typical of a lift-twin lift/cruise aircraft. Again, the for-
ward nozzle is circular as is appropriate for either a lift engine or a RALS nozzle. This
type configuration is appropriate for a fighter aircraft so that AR = 1.0 and 2.7, D/De =
6.5 through 10 were tested. The planform from Configuration 2-B was modified for this
configuration.

Four-nozzle Configurations incorporating rectangular nozzles also tend to fall into
two types. The first, Configuration 4-A, is simply a varient of Configuration 2-C wherein
each ejector is replaced by two, smaller AR ejectors. This has the advantage of permit-
ting an integral pitch control/lift system. Configuration 2-C was modified and tested
with the AR = 2.7 nozzles and D/De = 3. The other four nozzle possibility, Configuration
4-B, is somewhat similar to the XFV-12A arrangement. Configuration 2-B was modified
to provide this arrangement and was tested with AR = 2.0 forward and 1, 2.7 and 6 aft.
D/De ranged from 3 through 10.

A complete set of force balance data obtained during this program is contained on
Figures A-6 through A-63 and listed on Table A-I. The data is presented as Induced Lift
versus Altitude. The height of the test model is measured from the ground board to the
underside of the flat plate planform. In the cases of LIDs or contoured fuselage, the
height is measured to the underside of the wings. Altitude has been nondimensionalized
by D, the thrust-weighted average of the equivalent diameters of all jets of a configura-
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tion. Each configuration was tested with all of its jets having the same equivalent nozzle
diameter and the same thrust regardless of AR. Thus,

D - dFj + d21J2 + d3FJ 3 + d4F1 4  -dF JTd1.2,3.4F1 y

The models tested were selected as plausible design configurations for aircraft with
rectangular nozzles. These configurations were tested with LIDs and contoured fuselage
sections that covered the full fuselage width. Each configuration was varied in planform
size to account for a range of D/)De. During this variation the nozzle locations remained
fixed.

Testing was also accomplished in a cross-wind environment. During these runs, a
shroud was used to restrict the crosswind from flowing on top of the model and interfering
with the balance.
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APPENDIX B

CORRELATIONS .
The methodology of Section 3 has been applied to several configuration taken from

Refs. 17 through 19. The comparisons between the predictions and the test data are
shown in Figures B-I through B-5.
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